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Abstract— Noninvasive, detailed assessment of electrical car-
diac activity at the level of the heart surface has the potential
to revolutionize diagnostics and therapy of cardiac patholo-
gies. Due to the requirement of noninvasiveness, body-surface
potentials are measured and have to be projected back to
the heart surface, yielding an ill-posed inverse problem. Ill-
posedness ensures that there are non-unique solutions to this
problem, resulting in a problem of choice. In the current
paper, it is proposed to restrict this choice by requiring that
the time series of reconstructed heart-surface potentials is
sparse in the wavelet domain. A local search technique is
introduced that pursues a sparse solution, using an orthogonal
wavelet transform. Epicardial potentials reconstructed from
this method are compared to those from existing methods,
and validated with actual intracardiac recordings. The new
technique improves the reconstructions in terms of smoothness
and recovers physiologically meaningful details. Additionally,
reconstruction of activation timing seems to be improved when
pursuing sparsity of the reconstructed signals in the wavelet
domain.

I. INTRODUCTION

Heart rhythm disorders kill seven million people world-
wide each year. Body-surface electrocardiograms (ECGs) are
widely used to assess cardiac arrhythmias. However, these
only reflect the attenuated and dispersed electromagnetic
propagation of the hearts electrical activity to the body
surface. Direct, noninvasive assessment of electrical pro-
cesses at the level of the heart muscle would be of great
benefit to clinical practice. This can be achieved by solving
the inverse problem of electrocardiography, which would
yield electrical intracardiac activity from body-surface ECGs
and the corresponding patient-specific torso-heart geometry.
During the last decades, much progress has been made in
tackling the inverse problem of electrocardiography [1] and
applications in humans appear with increasing frequency. [2]
However, reconstruction of cardiac electrical activity remains
imperfect. This is partly due to the ill-posedness of the
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inverse problem, meaning that little variation (noise) in the
input data will yield large and unrealistic variations in the
reconstructions. To cope with this problem, regularization
is applied, incorporating additional constraints to arrive at
more realistic solutions. Previously, we described the use of
training data to improve reconstructions. [3] In this paper,
we investigate the use of a novel reconstruction method that
is based on constraints on the wavelet representation of the
inverse problem solution. We will show that pursuing sparsity
in the wavelet domain improves noninvasive reconstruction
of electrical heart activity.

II. THE INVERSE PROBLEM OF
ELECTROCARDIOGRAPHY

The goal of the inverse problem of electrocardiography
is to reconstruct electrical heart activity in terms of body-
surface ECGs and the patient-specific geometry. The elec-
trical activity of the heart can be represented by different
models. Most often, models are chosen that reconstruct heart-
surface potentials (epicardial potentials) or activation se-
quences. In this paper, we use a potential-based formulation.
This is represented by the following forward problem:

AY H = Y B (1)

in which Y B represents the vector of body-surface po-
tentials, Y H is the vector of heart-surface potentials, and
A is the transfer matrix that describes the electromagnetic
relation between those potential vectors. The transfer matrix
is based solely on geometrical and conductivity properties
of the torso. Usually, the transfer matrix is determined from
a patient-specific Computed Tomography (CT) scan. The
inverse procedure is depicted in Fig. 1.

In the inverse problem, the body-surface potentials Y B

and the transfer matrix A are assumed to be known. In
reality, both are subject to uncertainty. The measured signal
Y B is subject to noise and the matrix A is a mere estimate.
Due to the ill-posedness of the problem, direct solutions
are very sensitive to noise, even when A would be directly
invertible. This generally is not possible, for example since
it would require Y H and Y B to have the same number of
mesh points, which usually is not the case. By applying
regularization schemes, the ill-posed nature of this problem
can be restricted. In this paper, we use the Generalized
Minimal Residual (GMRes) method [4] as a comparison
method, an application of iterative Krylov subspace methods.
We compare this method to our new proposed setup. This
new method is based on maximizing sparsity of the wavelet



Fig. 1. The inverse procedure to reconstruct electrical heart activity
noninvasively, as applied in the data collection for this paper. (A) Body-
surface potentials Y B are obtained with an extensive set of electrodes
(n=256) attached to the torso of the subject. (B) The location of the body-
surface electrodes and of the outer heart surface is determined from a CT
scan. (C) The heart-torso geometry can be coupled with the measured body-
surface potentials. (D) By applying inverse algorithms, the corresponding
electrical heart activity can be reconstructed. Note that this patient carried
an implantable pacemaker (which can be seen in the CT scan), with leads
in the left and right ventricle enabling recording of intracardiac potentials.

representation to obtain improved reconstructions of heart-
surface potentials, similar to applications in tomographic
inversion. [5]

III. SUBJECT AND MATERIALS
Test and validation data were obtained from a patient in the

Maastricht University Medical Center (MUMC+, Maastricht,
The Netherlands). Data collection consisted of three record-
ings: 1) Extensive body-surface potential recordings; 2) A
computed tomography (CT) scan; 3) Intracardiac lead record-
ings. Body-surface potential (BSP) recordings were obtained
with 256 electrodes attached to the torso of the patient.
Recordings were taken for an extensive period, including
native rhythm (with a left bundle branch block (LBBB) mor-
phology), and pacing by implanted pacemaker. After body-
surface potential recording, a CT scan was obtained with the
electrodes still attached to the patient’s torso. A geometry
was created from the electrode positions (representing the
body surface) and the outer heart surface. The conductor
volume was assumed to be homogeneous. A transfer matrix
relating the electrical activity at the heart surface to the
body surface was computed with methods available from
the SCIrun software repository. [6] A few months after this
procedure, pseudo-unipolar electrograms were recorded with
the implanted pacemaker from an epicardial lead in the left
ventricle and an endocardial lead in the right ventricle. These
recordings were obtained for a paced beat and a native beat.
Although the recordings were not obtained simultaneously
with the other data sets, the corresponding 12-lead ECG was
equal for those beats. Therefore, these recordings could be
used for validation purposes, although their pseudo-unipolar
characteristics prevent exact morphological comparison to
reconstructed unipolar electrograms.

The combination of body-surface potentials and geometry
was used to reconstruct potentials at the heart surface.
Validation of the reconstructed potentials was performed by

comparing them to the heart-surface potentials recorded with
the pacemaker leads. For the paced beats, additional valida-
tion was possible by comparing the reconstructed location of
earliest activation with the known location of pacing.

The BSP recordings were band-pass filtered between
[0.5,100]Hz (3rd order Chebyshev filter with stopband ripple
of 20dB), to remove respiration related baseline wander and
muscular artifacts, and notch filtered with cut-off frequency
of 50Hz to remove powerline interference.

IV. METHODS
A. Iteration scheme

The inverse problem at hand is to determine the matrix
Y H from (1), where A is the the q × p transfer matrix,
Y H denoted the epicardial potentials and is an p×m matrix
over p gridpoints over pseudospace and m samples over time,
taking the role of m in [5]. The q × m matrix Y B is the
matrix of body-surface potentials using a grid of q points and
taking the role of d in [5]. Due to the topology of the heart
and torso it is an open problem of how to take the wavelet
transform over space in a meaningful way. Therefore, it was
decided not to regularize by taking the wavelet transform
over space as in [5], but to regularize over time. As a result
the wavelet transform takes the form:

P = Y HW
T and Y H = PW

where W is the m×m orthogonal wavelet transform matrix.
This choice differs from [5] such that WW T = W TW =
I . Consequently the functional [5, specifically their equation
(1)] changes, taking the differences in notation and the
change from vectors into matrices into account, to

I1(P ) = ‖Y B −AY H‖2F + 2τ‖P ‖1 (2)
= ‖Y B −APW ‖2F + 2τ‖P ‖1, (3)

where ‖ · ‖F denote the Frobenius norm and ‖ · ‖1 denotes
the entrywise 1-norm. The surrogate function [5, Eq. (2)]
changes to:

I(n)1 (P ) = I1(P )− ‖A(P −P (n))W ‖2F + ‖P −P (n)‖2F .
(4)

The surrogate function (4) can, for the purpose of mini-
mization, be rewritten as:

I(n)1 (P ) =

‖P−(ATY BW
T+(I−ATA)P (n))‖2F+2τ‖P ‖1+c(n),

(5)

where c(n) does not depend on P .
Since no mixing occurs with respect to P , the derivative

of (5) is given by

pi,j−(ATY BW
T +(I−ATA)P (n))i,j+τsign(pi,j) (6)

Similar to [5, Eq. (5)] the next iteration P (n+1) is found by:

P (n+1) = Sτ
[
ATY BW

T + (I −ATA)P (n)
]
, (7)

where Sτ is the soft-thresholding [7] operation and τ is used
as a (possibly scale dependent) threshold that will be applied
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Fig. 2. LBBB native rhythm. First row: RV endocardial lead (left) and
LV epicardial lead (right) measurements. Second row: RV (left) and LV
(right) epicardial potentials reconstructed by wavelet-based regularization
(WaveReg). Third row: RV (left) and LV (right) epicardial potentials
reconstructed by GMRes; a.u.: arbitrary units.

iteratively. Due to the iterative nature of this thresholding
step, the choice of τ is not straightforward and should
be much lower than the choice of threshold for a single
thresholding step. Furthermore, the value of the threshold
is dependent on the wavelet kernel at hand.

Due to the fact that the assumption is made that W is or-
thogonal, the wavelet employed can for e.g. be a Daubechies
wavelet [8] or a wavelet that has been designed specifically
for the signal at hand [9].

In [5] a number of recommendations are made such
as rescaling the transfer matrix A and using a two-step
procedure. These recommendations apply here as well, where
the reader is cautioned that the parameter τ should change
accordingly.

B. Starting point

The iteration scheme is a local search technique that is
initialized from P (0), and in general this search technique
has the tendency to end in a local optimum. As a result a
reasonable starting point P (0) is essential. Taking merely
the pseudoinverse of (1) will provide a noisy result for the
problem at hand. Therefore the choice is made to start from
a so-called “truncated SVD” (tSVD) solution. This initial
solution is obtained as follows:

1) Compute the singular value decomposition (SVD) of
the transfer matrix: A = UDV T

2) Truncate the SVD to the b most significant components
and reconstruct the SVD truncated transfer matrix Ã:
Ã = U [b]D[b]V [b]T , where [b] denotes the matrix has
been truncated to its b most significant components
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Fig. 3. Paced rhythm. Plots are as in Fig. 2

3) Compute Y
(0)
H using the the pseudoinverse of the SVD

truncated transfer matrix Ã: Y (0)
H = Ã

]
Y B

4) Obtain the actual starting point by taking the wavelet
transform: P (0) = Y

(0)
H W T

The parameter b has a typical value of 20.

V. RESULTS

The approach was tested on a limited dataset consisting of
a number of heart beats. Experiments show that the use of
the Daubechies 8 wavelet (i.e. with 4 vanishing moments)
gives a smoother solution than the use of the Daubechies
4 wavelet. Due to the uncertainty of the reconstruction the
smoother solution was preferred and the choice was made
to use the Daubechies 8 wavelet. The number of scales was
chosen to be 7, such that all coefficients that correlate with a
single beat appear in the detail coefficients. The parameter τ
was set by experimentation and the recommendation from [5]
was followed to use a threshold value for the approximation
coefficients that is a factor 10 lower than for the detail
coefficients. The implementation allows for using different
thresholds for different scales for further fine-tuning. The
results presented here have a threshold of 3.2 for the approx-
imation coefficients and 32 for the detail coefficients, where
note should be taken that the signal is rescaled by a factor
α following the recommendations of [5], to have a matrix
A that is scaled such that the largest eigenvalue of α2ATA
is just below unity, ensuring faster convergence. The two-
step iteration procedure from [5] was employed where each
iteration step was performed 1000 times.

In Fig. 2, the reconstruction of a left bundle branch block
beat is illustrated. The smoothness of the reconstruction
has increased as desired and artifacts on the slopes have
disappeared. For the right ventricular location the proposed



Fig. 4. Ventricular activation times of a paced heart beat. This beat
developed after pacing on two different locations: first the right ventricle
and 10ms later on the left ventricle. Asterisks indicate the location of the
pacing leads. The top row shows the reconstructed activation times based
on the GMRes reconstruction, the bottow row is based on the wavelet
regularization. Red indicates early activation, blue indicates late activation.
For a color figure, please refer to the online version of this paper.

reconstruction seems to also capture the positive deflection
after the initial negative deflection, which traditional methods
such as GMRes and tSVD were unable to reconstruct.
Furthermore, in the left ventricle the negative deflection after
the initial positive deflection is not captured by GMRes, but
is apparent from the wavelet-sparsity based reconstruction.
Of course, these results should be considered with care, as the
intracardiac measurements date from several months after the
BSP mapping, although the 12 lead ECG has been verified
manually to ensure that similar signal morphology.

Fig. 3 illustrates the reconstruction of a paced beat.
The wavelet-sparsity based reconstructions again seem to
be closer in morphology to the measurements than the
reference regularization method. For example, the positive
deflection measured at the right ventricle after the initial
negative deflection seems to be more pronounced with our
proposed method. However, also a late deflection seems to be
more pronounced. This deflection was already present in the
starting point, which seems to indicate that the local search
technique has not been able to move away far enough from
this initial solution.

In Fig. 4 the timing of activation (defined as the maxi-
mum negative deflection of the reconstructed electrogram)
is shown over the ventricular surface. The reconstructed
locations of earliest activation should coincide with the
pacing locations. The wavelet-based reconstruction fulfills
this criterion better than the GMRes-based activation times.
Moreover, the timing of activation (RV before LV) is in
opposite order for the GMRes-based reconstruction, but in
correct order for the wavelet-based reconstruction. Clearly,
the wavelet-based approach performs better in this example.

Both Figs. 2 and 3 show unwanted oscillations in the
reconstructed potentials. Another choice of wavelet type
and threshold level might yield improved results. However,
even with these oscillations present, major physiological

parameters (such as activation times) seem to be intact or
even improved when compared to traditional reconstruction
methods.

VI. DISCUSSION

We have shown that wavelet-based sparsity reconstruction
of epicardial potentials is feasible and yields results that
are equal to or even better than existing reconstruction
methods. The restriction of wavelet sparsity limits the solu-
tion space, thereby reducing the influence of ill-posedness
on the reconstructed signals. The current choice for the
Daubechies 8 wavelet ensures smoothness, but other choices
of orthogonal wavelets can enforce other desirable properties
of reconstructions. The quality of the reconstructions is also
dependent on the starting point. With an inconvenient starting
point, the optimization might terminate in a solution that
contains waves that are not present in the actual signal.
Since the transfer matrix and the BSPs are both subject to
uncertainty it is recommended that as much patient-specific
information as possible is included in the starting point to
ensure that the amount of uncertainty is reduced.

The propagation of electrical potentials over the heart
surface is obviously also dependent on spatial characteristics.
Future improvements would aim at coupling the wavelet
representation of these signals not only over time but also
over space. This would require a wavelet transform that
decomposes the local electrograms on a heart surface over
time; i.e. in three dimensions, where the surface is not in a
plane, but takes the geometry of the heart. How to construct
such wavelet transform is yet an open question but would
improve the initials results presented in this paper even
further.
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